Tetrahedron Letters No.55, pp.4769-4772, 1970. Pergamon Press. Printed in Great Britain.

THE SYNTHESIS OF EXO, EXO-11-OXATETRACYCLO[4.4.1.0.^{2,5}0^{7,10}]UNDECA-3,8-DIENE. THE STEREOCHEMISTRY OF THE TRICYCLO[6.2.0.0^{3,6}]DECANE DERIVATIVE OBTAINED BY THE PHOTODIMERISATION OF DIMETHYL TRANS,TRANS-PENTA-1,4-DIEN-3-ONE-1,5-DICARBOXYLATE

N.E. Rowland and F. Sondheimer 1
Chemistry Department, University College, London WClH OAJ, England

G.A. Bullock 2 and E. LeGoff

Chemistry Department, Michigan State University, East Lansing, Michigan 28823, U.S.A.

K. Grohmann

Chemistry Department, Cornell University, Ithaca, N.Y. 14850, U.S.A. (Received in UK 19 October 1970; accepted for publication 28 October 1970)

We report the synthesis of exo,exo-11-oxatetracyclo[4.4.1.0.2,50,7,10] undeca-3,8-diene (1). This molecule contains ten CH units in addition to the oxygen bridge, and is a potential precursor of fully unsaturated C_{10} -hydrocarbons which are of theoretical interest. The corresponding diaza analogue 2 (which contains two additional phenyl substituents) 3 and the etheno analogue 3 4 have been synthesised recently by Paquette et al.

$$\frac{1}{2}$$

Irradiation of crystalline dimethyl <u>trans, trans-penta-1,4-dien-3-one-1,5-dicarboxylate</u>
(4) with a Hanovia Type L ultraviolet lamp (450 W), using a vycor filter, gave tetramethyl
4769

tricyclo[6.2.0.0^{3,6}]decane-2,7-dione-4,5,9,10-tetracarboxylate (5a, mp 242-243°) ⁵ in 6% yield. The indicated stereochemistry follows from the stereochemistry of the derived oxides 7 and 1, discussed below.

Corse et al. 6 have postulated the "all-trans" stereochemistry 5b or 5c for the dimer on the basis of the nmr spectrum, which however is equally compatible with the "cis" stereochemistry 5a. Moreover, the trans-junction between the 4- and 6-membered rings in 5b or 5c would make the substance less stable than the corresponding cis-fused compound, and it would be expected that epimerisation of the ring junctions adjacent to the carbonyl groups would occur under basic conditions. 7 In practice, the dimer was recovered unchanged after treatment with boiling pyridine, confirming the cis-fused stereochemistry.

Reduction of 5a with an excess of sodium borohydride in THF at room temperature for 48 hr gave the diol 6 (viscous liquid) in 72% yield as a mixture of stereoisomers; repeated crystallisation from chloroform-hexane resulted in 21% of one pure isomer, mp 239-242°. B. Dehydration of 6 (mixture of stereoisomers) with phosphoryl chloride in pyridine at 0-100° led to 6 20% of the exide 7.9 mp 209.5 - 210.5°. The nmr spectrum (CDCl₃) showed a 2-H singlet at 6 5.65 (H¹, H⁶), a 12-H singlet at 6 32 (CH₃), and a 8-H symmetrical 6 32 multiplet centred at 6 7.00; this multiplet consisted of 4-H multiplets at 6 6.78 (H³, H⁴, H⁸, H⁹), and 6 7.22 (H², H⁵, H⁷, H¹⁰). The assignment of the 6 2B multiplet was substantiated by partial exchange of

$$\frac{5a}{4}$$

$$\frac{6}{4}$$

$$\frac{6}{4}$$

$$\frac{1}{4}$$

$$\frac{7}{4}$$

$$\frac{7$$

 H^3 , H^4 , H^8 , and H^9 in the corresponding tetra-acid $\underline{8}$ (see below) with D by treatment with NaOD in D_2O . The spectrum of the product showed an A_2B_2 multiplet in which the lower field part was now less intense than the higher field part. The simplicity of the nmr spectrum of $\underline{7}$ indicates that the molecule possesses a high degree of symmetry. The fact that H^1 and H^6 are not split significantly shows that the dihedral angle between these protons and H^2 , H^5 , H^7 , and H^{10} is \underline{ca} 90°, and the cyclobutane rings must therefore be \underline{cis} exo-fused. The fact that the carbomethoxy groups in $\underline{7}$ are on the opposite side to the oxide bridge follows from the probable mode of formation of $\underline{5a}$ (see formula $\underline{4}$), and the fact that no isomerisation is to be expected in passing from $\underline{5a}$ to $\underline{7}$.

Saponification of $\underline{7}$ in dioxan with aqueous hydrochloric acid at \underline{ca} 100° for 7 hr gave 75% of $\underline{8}$ as a monohydrate, mp > 330°. Attempted oxidative decarboxylation of $\underline{8}$ with lead tetra-acetate in pyridine 10 gave no $\underline{1}$, but this transformation could be brought about electrolytically. A vigorously stirred solution of $\underline{8}$ (1 g) in 15% aqueous pyridine (100 ml) and triethylamine (1.3 g) was electrolysed for $2\frac{1}{2}$ hr between two stationary concentric cylindrical platinum wire gauze electrodes at 50-80 volts dc (initial current 0.6 amp) with external ice cooling. Isolation with ether and distillation at 55° (bath temp.) (12 mm) gave $\underline{1}$ (21 mg, 5%) as a colourless liquid which rapidly turned yellow at room temp. in air; homogeneous by glc;

mass spectrum, $\underline{m/e}$ 146.0734 (calcd for ${}^{12}C_{10}^{1}H_{10}^{16}0$: 146.0732). The nmr spectrum of $\underline{1}$ (CDCl₃) confirmed the assigned structure and stereochemistry, showing a 4-H singlet at τ 4.09 (olefinic), a 2-H singlet at 6.20 (>CH-O-) and a 4-H singlet at 7.30 (allylic).

By comparison, electrolysis of 9 (obtained from 5a by acid hydrolysis) or 10 (obtained

from $\underline{5a}$ by successive formation of the bisethylenedithioketal, Raney nickel desulphurisation, and acid hydrolysis) gave none of the corresponding diolefin. The difference may be due to the greater rigidity of $\underline{8}$ compared with $\underline{9}$ or $\underline{10}$.

Notes and References

- 1. To whom inquiries should be addressed.
- Taken in part from the Ph.D. thesis of G.A. Bullock, 1968. Financial support by the Petroleum Research Fund and the National Science Foundation is gratefully acknowledged.
- 3. L.A. Paquette and J.F. Kelly, Tetrahedron Letters, 4509 (1969).
- 4. L.A. Paquette and J.C. Stowell, ibid., 4159 (1969).
- See F. Straus, <u>Ber.</u>, <u>37</u>, 3294 (1904); H. Stobbe and E. Färber, <u>ibid.</u>, <u>58</u>, 1548 (1925);
 H. Midorikawa, <u>Bull. Chem. Soc. Japan</u>, <u>26</u>, 302 (1953).
- 6. J. Corse, B.J. Finkle, and R.E. Lundin, Tetrahedron Letters, 1 (1961).
- 7. See E.J. Corey, R. Mitra, and H. Uda, J. Am. Chem. Soc., 86, 485 (1964).
- 8. All crystalline new substances gave satisfactory elemental analyses, and showed ir and nmr spectra compatible with the assigned structures.
- 9. About 75% of 6 was recovered. Only one of the three possible stereoisomers of 6 can form the oxide 7, and the recovered 6 probably consists mainly of the other two isomers.
- See C.M. Cimarusti and J. Wolinsky, <u>J. Am. Chem. Soc.</u>, <u>90</u>, 113 (1968) and references quoted there.
- See P. Radlick, R. Klem, S. Spurlock, J.J. Sims, E.E. van Tamelen, and T. Whitesides, <u>Tetrahedron Letters</u>, 5117 (1968); H.H. Westburg and H.J. Dauben, <u>ibid</u>., 5123 (1968).